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PREACE

The work presented in this report was done under NASA Contract

Nmr-21(oe), monitored by the Director of Comunication Studies, in the

Office of Applications. The general study area of the contract comprises

technical studies relating to communication satellites. As part of this

work, RAND has paid particular attention to guidance and orbit stabiliza-

tion problems of 24-hour synchronous satellites. The present study shows

that the problem of maintaining such satellites in an exactly stationary

position vill be more complex than had been previously expected. The

results should be of concern to all agencies and contractors involved in

the development of a synchronous satellite.

A summary of the findings of this study was presented to NASA on

October 20, 1961.
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SUHWAY

This paper presents the results of an investigation of the behavior

of a synchronous (24-hour) satellite as affected by the triaxiality of the

earth. This includes not only the effect of the equatorial bulge but also

the ellipticity of the earth's equatorial section. The results indicate

that there are only two positions on the equator (12309' West Longitude

and %°311 East Longitude) at which a truly synchronous satellite can exist

in a stable condition. In order to establish a synchronous satellite at

any other longitude, station-keeping propulsion of the order of 51 ft/sec for

each year of operation would be required. If no station-keeping propulsion

is provided, the satellite will execute long period (greater than 1.3 years)

oscillations about the closest of the two stable positions mentioned above.



fI

CONTENTS

PI FACE * . * . . . . . . . .ix

SU144ARY * & e . * * * .... o••°•° V

LIST OFe IGMES *................ ix

LIST OF S!MOLS . . . . . . . . ....... . xi

Section
I. INTODUCTION . .. .. .. .. .. . . .

II. METOD OF ANALYSIS .... .... ............ 3
Statement of the Problem .. ........ . 3
Equations of Motion . . . ........ 3
Linearized Equations . ........ 8
Large Angle Equations ... ....... .... 14

III. RESIJLTS AND DISCUS3ION. . . . . . . . . . . 17
Synchronous Satellite . . . . . . . . . . 17
Station-Keeping Propulsion . . . . . . . . 18
Large Angle Oscillations . . . . . . . . . 24

IV. CONCLUSIONS . . . . . . . . . . . . 29

REFERENCES. . .. . . . .. . . . . .. . 30



ix

LIST OF FIGURES

1. Coordinate system. . . . . .*. . . . . . . . . . . 4

2. Earth's equatorial section. . . . . . . . . . . . 6

3. Drift time as a function of .. .. . . . . . . . 19

4. Radial error as a function of 7o ........... 20

5. Velocity requirement per year as a function of
synchronous position. . . . . . . . . . . . . . . . 23

6. Period of oscillation as a function of amplitude ...... 2,

7. Variation in radius during oscillation . . . . . . .. . 26

8. Maximum radial variation as a function of' amplitude
of oscillation. . . . . . . . . . . . . . . . . 2



( xi

LIST OF SYMBOLS

a radial acceleration componentr

a, easterly acceleration component

a0  northerly acceleration component

F radial force componentr

F0  easterly force component

F northerly force component

90  gravitational acceleration at earth's surface

I specific impulse of fuel

J2 earth oblateness coefficient

S2(2) equatorial ellipticity coefficient

K(7 ) complete elliptic integral of the first kind

kI  modified oblateness coefficient

k 2  modified ellipticity coefficient

m mass of satellite

m p ass of station-keeping fuelp

n number of station-keeping corrections in a time T

nI unit vector in an easterly direction

n 2 unit vector in a northerly direction

R radius of the earth
0

r radial distance from the center of the earth

r c synchronous satellite orbital radius

* 0synchronous satellite orbital radius for a spherical earth

ri unit vector in the radial direction



xii

d
8 operation d

s6 roots of the characteristic equation (I l...4)

T operating time of the sate lite

TO  oscillation period

t time

to time of drift before correction

U earth' s gravitational potential

V0  total corrective velocity required in time T

AVG drift velocity at time to

satellite angular position relative to minor axis of earth's
equatorial section

70  initial value of 7

5 limit of integration

C1  phase angle

0 spherical coordinate of satellite in the equato"ial plane

"E angular position of earth's minor axis

;E earth's angular rate

non-dimensional time

0 spherical coordinate of satellite in the meridian plane



1

In recent years the idea of establishing an artficial satellite in a

synchronous equatorial orbit about the earth has become Increasingly at-

tractive. Since such a satellite by definition would remain above the same

point on the earth's equator, it cou~ld be used as a commuication relay station

between any tvo points on the earth which are within its field of view.

If it is assumed that the mass distribution of the earth is spherically

symmetric, then the resulting gravitational potential varies inversely as the

radial distance from the earth's center and is independent of either latitude

or longitude. Under this assumption, it is a simple matter to demonstrate

that a satellite on a circular orbit at an altitude of 22,236 at mi would

have an orbital period of one sidereal day. Thus, such a satellite in the

earth's equatorial plane would appear to be fixed relative to the earth.

It has long been recognized that in order to take into account the actual

non-spherical nature of the earth's mass distribution, it is necessary to

include additional terms in its potential function in the form of higher

order spherical harmonics. These additional terms depend not only on the

radial distance but also on latitude and/or longitude. As a result of obser-

vations of some of the artificial satellites launched thus far,(1) it has

been possible to refine the estimates of the magnitude of these additional

spherical harmonic terms. The two additional terms considered in the above

reference are (1) the zonal solid spherical harmonic corresponding to the

usual oblateness of the earth such that the equatorial radius exceeds the

polar radius, and (2) the sectorial solid spherical harmonic which results

from the ellipticity of the earth's equatorial section. The first of these

terms is latitude dependent while the second is a function of longitude as

well.
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The question now arises as to Vhat effect these modifications in the

earth's potential might have on the synchronous nature of a 24-hour satellite.

The present paper addresses this problem by setting up the general equations

of motion of a satellite under the influence of the expanded potential

function. These equations are then linearized in terms of small deviations

from a circular synchronous orbit. On the assumption that the orbital

injection procedure is perfect and that the initial deviations from the

synchronous condition are all zero, the above equations can be solved for

the forced solution resulting from the added terms in the potential function

which act as driving functions in the linearized equations.

On the basis of these results it is possible to determine the amount

of propulsion required to maintain a synchronous satellite at a given longitude

on the equator.

While the solution of the linearized equations is only valid for small

variations in orbital radius and for variations in epoch angle up to 100

relative to the synchronous position, an approximate equation is also develop-

ed which allows large variations in epoch angle but is still restricted to

small radial displacements. By means of this equation the behavior of the

satellite can be described in the event no propulsion is provided to main-

tain position.
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II. M OD 01 ANALTSIS

STATMMT OF THE PROBLDG

The problem which is solved in the succeeding sections of this report

is the determination of the motion of a presumably synchronous satellite

relative to the earth when the effects of earth's oblateness and the ellip-

ticity of its equatorial section are included in the gravitational potential

function. For the purposes of this analysis, the gravitational attraction

of the sun and moon, the sun's radiation pressure, and residual drag effects

are neglected.

EQUATIONS OF MOTION

Coordinate System

The reference system adopted is shown in Fig. 1 where the XYZ system is

an inertial reference with origin at the earth's center and OZ along the polar

axis. In this system the position of the satellite P is specified by the

spherical coordinates 0, 0, and r. Also, the line OA represents the instan-

taneous position of the minor axis of the earth's equatorial section so that

the angle ) represents the difference in longitude between the satellite and

this minor axis reference line. For a truly synchronous satellite 7 should

remain constant. In addition, three unit vectors, r1 , n1 and n2 are specified

at P corresponding to displacements due to small changes in r, 9, and 0, re-

spectively.

Acceleration Components

The components of acceleration in the direction of the three unit vectors

specified above can be expressed in terms of r, 0, and 0 as follows

a r-r- r 2 cos2 0 - r02



p

0y

Fig. I -Coordinate system
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Force Components

The formulation of the earth's gravitational potential presented in

Reference 1 is used to determine the corresponding force components.

2 2  2u o 0 R , 3 sin 0 - l

+ Y2 (2) R o 2 1 (4)+3J2  .-1  cos2 os 11

where

R a earth's radius

go g gravitational acceleration at the earth's surface

J2 a non-dimensional multiplier

J2( 2 ) - non-dimensional multiplier

In Eq. (4) the first term results from the spherical part of the earth's

mass distribution, the second or J2 term from the usual oblateness about

the polar axis term from the ellipticity of the

earth's equatorial section. It Is seen that the J2 term depends only on

the latitude, 0, while the J2 (2) term depends not only on the latitude but

also on the relative longitude, 7. See Fig. 2.

The numerical values of J2 and J2( 2 ) have been determined in Ref. 1 on

the basis of observations of Vanguards II and III as follows

J2 a + 1.08219 x 10'3

(2) . 5.35 x 10o6
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Satellite

Minor
axis

Major
axis

Fig. 2- Earth's equatorial section
(ellipticity exaggerated)
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A value of J2 (2) of this magnitude is equivalent to a difference of 671 ft

between the semi-major and semalminor axes of the equatorial section.

The desired force components can be obtained frM Eq. (4) as follows

Fr u RoRo2 , JE2 goRo
4  2

m ~ - - - 4 ~ (3 sn0 -1

9J2  o ~cs2€ cos 2 7  (5)
r

9 Fe(2) . 2 °R° 4 cos2 0 e o 2 7 (6)

r4

- - -sin 0 cos 0
r

(2) r

6. 712 € 'o2 0s (6)
r

where

m = mass of the satellite

7 : e - 6 E

Complete Equations

The general form of the equations of motion is obtained by equating

the corresponding acceleration and force expressions from Els. (1)p (2), (3),

(.), (o) and (7) to give the following

2 N 2  4oo

2 c (3sin0-1)



8

9J2(2)gOR04 00s2 coo 27 (8)

r

1 r [r 0 coo 4 cos 0 sln 27 (9)
r co0 r

4a

[o 11
1 d 2 r2 go0R0 n 4 ~aI

r

Since the present analysis is concerned with an equatorial sate3llte, the

above equations can be simplified by assuming that 0 Is & small anale, In

which cane Eqs. (a,(9) and (10) reduce to

rr 2 4...2. - 4 coo 2y (11)
r 2r r

6J2(2) 
goRo

4

i - sin 27 (12)
r

1 d [r2;] + rW 0-0 (13)

where terms of the order or J. adJ2(2) 0 have been neglected in Sq. (13).

Since the J2 and J2y(2) terms do not have any significant effect on

the 0 equation, the rest of the analysis will be concerned only with motion

in the orbital plane, as described by Eqs. (11) and (12).

LINEARIZED EqUATION3

w ince this paper is primarily concerned with deviations of the satel-

lite from a nominally synchronous orbit, it is convenient to linearize
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Eqs. (11) and (12) in the vicinity of the conditions for such an orbit.

This is accomplished by defining the following set of variables

r rc  (A. )

E + eE  + (15)

Y 7 + 7 (16)

where

r. = orbital radius of a synchronous orbit

70  0 longitude difference between the minor axis of earth's

equatorial section and the desired synchronous position

of the satellite.

Substitution of Eqs. (14), (15) and (16) into Eq. (.1) gives
go Ro2 (

r- rc ; 2 _ ;2 ErE- 2r E A.- - (7 -(r)
ArceE GE Er-r c rc

N2og0o0(
1  4r)

c

9- J2(2) gR 4  46r- cot; 27 -in20(17

(i -z ) _r

cC

By equating the steady state terms to zero as follows

r (2 1 oh o 3

rc-E o 2 r 7- sCn

rr~
c

a relationship is obtained which defines the value of the 6ynchronou.; orbital

radius, rc . Thus it is seen that earth oblateness modifies the valuc o'
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rc from that obtained for a spherical earth.

By combining Eqs. (17) and (18) and neglecting higher order torus

the following equation results

r.2 gRo 1
Ar L~- .-2+ Ar -2 r'.;.A;

C3

(e22) g° (2)

18J- 2 s cos 2yo  (19)

Equation (19) can be further simplified by Introducing the following lumped

constants R 2
k .j 2 -0 (20)

r c

(2) R 0  (21)
k2  - 2  r2

and by making use of the approximate form of Eq. (18) in which the J2 term

Is neglected to give

~2 jo(22)
9i r0 3

Thu Eq. (19) becomes

Ar * 2 Ar '23 r EA7 + 18 k2 Q sin oA -

+ 9k 2  E cos 270 (23)

Finally, If a non-dimensional time r Is defined by the relation

T QEt (24)
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Zq. (23) can be rewitten as

d 2  - 3() -2 + (18k2 sin 2o) A7 + 9k2 cos 2y (25)
dr2 c' c-

In a completely analogous manner Eq. (12) can also be linearized and put into

non-dimenslonal form as follovs

2 d (Lr) + (30k2 sin 2,,) A-.

dy- (12k cos 27 ) AY +6k 2 s i n27 (26)2 2 0' 2 0

The preceding analysis has reduced the two non-linear differential equations

of motion (11) and (12) to two coupled linear differential equations (25)

and (2o) with constant coefficients relating the variables Ar/rc and A?.

By combining Eqs. (25) and (26) separate equations for Ar/r and 67
C

are obtained in operator form as follows

)sco 2) (r22)

s 4 + S2 + (2'14k 2 sin 27'0 )s + (j6k2  O 0  - 0k lO k (27)

I s2 (24k 2 sin 27.)s (36k2 cos 27o)] a - 18k2 sin 2yo (28)

dwhere a . d-

It is interesting to note at this point that the above eouations depend

only upon k2, which is related to the ellipticity of the equatorial section.

The only simificant effect of the other oblateness term is to modify the

value of r through Eq. (1E).C

In order to solve Eqs. (27) and (26) the roots of the characteristic

operator equation are obtained in the form
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1 = + 12k2 sin 20 + 
J  (29)

2 a + 12k 2  s 270  " J (30)

a . - 212k s 20 + 6-'/ C" 270 (31)3 2 si 2 0  6~ (31

s 4 .- 12 2 si 27 6 %,f2os 270  (32)

The torm of the solution depends on the sIgn of coo 270 since this

determine* vhether s3 and s4 are real or. conjugate complex. If coo 27 0<0

then the solution is of the form

Ar 3/2[1 s 2  1 + (12k 2 sin 2yo) coo (1-41 )
- "k 7 '1 2sin 2P

-2 tan o-k27o 2s0 e " (c2o2 sy_ 2 ) sink (6.,-k coo n )'r

3(33
co 2y0

Ay k- 2 k 1 i 7 sin2 2701 1/2 a + (M2 s 27o)' sin (r-e)

+ tan 27 a " (1212 sin 27o)- cash (6/-E ,coo 2o)jr

- tan 270  (34)

where

tan 4 tan 27o (ta)

In obtaining the above solution, it has been assumed that the initial orbital

injection errors have been reduced to zero so that (ar° = &r° = Ay 0 a 7 0)

and, as a result, Eas. (33) and (34) represent the driven solution resulting

from the J,(2) term in the earth's potential function.
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An examination of the above solution shows that a number of simplifica-

tions can be made in view of the magnitude of the conetant k 2 (of the order

of 10"7). The exponential terms have time constants in excess of 300 yr

and can be replaced by unity. Likewise, terms involving k2 as a multiplier
2 u1/2.plier

can be neglected compared to those involving k2  Thus, a simplified

version of the solution can be written as

2 tan 2y, vf- k, cos 27, sinh(6 -k cos(6 o)- (36)r coo ?72 o
C

67 - tan 271,[i- cosh (u --k (37)

This form of the solution applies for 450 <170 <900 .

If the value of cos 2,0> 0, then the rootzs 3 and s4 become complex

and it can be shown that the form of the solution analogous to Eqs. (36) and

(37) is given by

ar tnco 2 sin (q_/ o o)r (3t)

a - tan 2"0 [1 - cos ( k cos i27 o)] (39)

This form of the solution applies for 17o< o450

Due to the linearization procedure used in obtaining the above solutions,

they are only valid as lonc as

Ar<<r C

by " sin A

An examination of Eqs. (36) and (36) indicates that the first condition

will be satisfied for values of i equivalent to a three year duration, at

which time Ar would be about one per cent of r e .



Hovever, the buildup of A7 Is more rapid and may reach a value of 100

in about tvo months. Thus it is seen that the behavior of Ay is the do-

termining factor vith regard to the time Interval over which the solutions

remain valid.

LAMG AIMSE EQUATIONS

In viev of the fact that Ay exceeds the linear range in the above

solution after a reasonable length of time, it vas felt that a solution

vhich was valid for large values of A7 vould be desirable. This can be

obtained from Eqs. (11) and (12) by substituting 0E + 7 for 0 to give

2 4
"; ,(% ) -oo 2 g°

0
°  9J(2)R 4  (i°o

r 2r r

6j (2)gR
4

2; 22r ~S+ -r (G +) - - sin 2 (41)r5

By successive differentiation these equations can be combined to give a

fourth order equation in y as follows

* "; + 24k 2  sin 2y + l 8 k 2 E (2)

While this equation still requires that both r and ; remain small, it does

not restrict the value of y. Since It has already been demonstrated that

the variation in y is a low frequency solution with negligible damping,

Eq. (42) can be simplified by dropping the first and fourth derivative

terms. In terms of the non-dimensional time i the equation becomes

d2
- + l8k sin 2y a 0 (43)
1~r 2



t! 15

from which a first Integral a n be obtained in the form

Az a -6 [1 _sin 27o (44di I'2 8" L 7

Equation (i44) can then be expressed in the form of an elliptic integral as

follows
4 8

"-- 1 dy

- d (45)

where

8 = sin 1 (4n76)sinyo

From Eq. (45) it is seen that the resulting angular motion of the satellite

will be a large amplitude oscillation about the position of the minor axis

of the earth's equatorial section with an amplitude of yo . The period of

this oscillation is given by

T0. 227 T I (47)
3 k~6  1 -sinvsin.J'

vhere the Integral is K(7o ), the complete elliptic integral of the first

kind.

The variations in the orbital radius r during this oscillation can also

be determined by substituting Eq. (44) into Eq. (41) and integrating.
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In this integration r 5 on the right side of Eq. (41) is assumd to be

equal to r The resulting variation of r is given by

r Z / 
2/3

F'a V '2 L sy j

vhlcbh ca (48)pifedt

-L .4Vk- siny o  1 .1n ,(9)

A omparlson of Zqs. (44) an (49) shows t

re  3 dr

Thus, vhen y is increasing in gnitude, Ar is negative and the orbital

radius is slightly less than r ; conversely, when y is decreasing, Ar is

positive and the orbital radius is slightly larger 
than r . The Maxim

excursion in Ar occurs vhen y equals zero at the minor Ws ad Is given by

ArmaX + 4V2 (51)

C



17

III. RSUJLTS AND DISCJSZON

Sqy ICIr, OS SATELLfI

As a result of the foregoing analysis, the effects of the non-spherical

mass distribution of the earth on a nominally synchronous satellite can be

evaluated. The effect of the usual earth's oblateness, or J2 term in the

earth's potential, is simply to increase the radius of the synchronous orbit

by a smal amount, as indicated in Eq. (18). The solution to Eq. (18) is

to a good approximation r 1 + o2

where r0 is the solution of Eq. (18) when J2 is zero. For ;E corresponding

to a period of one sidereal day (86164 sec), the value of ro is given by

r U 26194.9 at mi

From Eq. (52) It is found that the J2 term increases the orbital radius by

.32 *t mi to a value of

rc a 26195.2 st mi

This effect would not be difficult to eliminate as part of the orbital

injection corrections.

On the other hand, the effect of the ellipticity of the earth's equato-

rial section is a more serious problem. An examination of Eqs. (37) and

(39) shows that for values of 47 up to about 10 both equations can be ap-

proximted by the relation

22Avu-(- 9k 2 in2 27)t (53)
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In a similar manner Eqs. (36) ad (38) can both be approximated by the

relation

Ar 2 o ~
Ar _ + (12k, iE sin 2-y)t (54)

From Eq. (53) it is possible to compute the time required for a satel-

lite to drift from an initial epoch angle yo through an angle Ay. Figure 3

is a plot of this time interval for Ay equal to 100 as a function of the

initial epoch angle y0 It is seen that the drift time has a minimum of

.1738 yr or about 2 months for y0 equal to + 450 with the drift being toward

the minor axis (7 a 0 ). Also, the drift time becomes infinite for 70 equal

to 00, + 900, 1800. However, + 90 represent positions of unstable equi-

librium as demonstrated by the large amplitude solution, while 00 and 1800

are positions of stable equilibrium. Thus, unless station-keeping propulsion

is incorporated into the satellite design these two stable positions are

the only locations at vhich a truly synchronous satellite can exist.

It is also possible to determine by means of Eq. (54) the change in

Ar vhich occurs during the 100 drift vhich was assumed in Fig. 3. In Fig. 4,

Ar is plotted as a function of y and It is seen that the maximum value Is

about 15 miles. Thus the major effect of the J2 term is to produce a

change in the relative angular position, 7, of the satellite as seen from

the earth.

STATION-KEEPING PROPULSION

If it is desirable to maintain a satellite in a synchronous position

other than the tvo stable positions described above, the amount of propulsion

required for station-keeping becomes an important consideration. To determine

this, Eqs. (53) and (54) are differentiated to give
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AT (yr)

IayI 100

.2

.1

-90 -45 0 +45 +90
yo (deg)

Fig. 3 -Drift time as a function of y
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Ar (st ml)

-15

110 JAYJ 100

t5

yo (do g)

-90 -45 045

Fig. 4 -Radial error as a function of y
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A7 c : (k 2 srin 2.)t (rI)

td

A; - 2k2 p rc sin 2o (56)

Equation (6) gives tbe radial velocity result fra the perturbation of

the orbit, while the tanfental velocy h eti compo/netd by mltiply

Sq. (55) by r a to give

AVG l 8k 2 r cit sn20(7

SFrom Eq. (%) it can be shown that the constant radial component of velocity

has a maxim value of .0148 ft/sec for y0 equal to 4 o. On the other hand,

from Eq. (57) it can be shown that AV, builds up linearly at the rate of

•.1395 ft/sec/day. Thus after one day, the tangential component of velocity

AV is the dominant perturbation in the satellite mot4on. To restore the

satellite to its original position at an angle 70 after it has drifted toward

the minor axis for time to it is necessary to apply sufficient propulsion to

change its velocity by an amount 24V0 in a direction opposite to the drift.

Since the system is conservative, this reversal of the drift velocity will

cause the satellite to move back to its original value of 70 in an additilowe

time interval, to . The satellite then reverses direction and begins to drift

again toward the minor axis and the above procedure is repeated. Thus, at

intervals of tO, it is necessary to make a velocity change of -2AV 0 . In a

total time of T equal to 2nt 0 the total velocity change V0 Is given by

V0 - 2 2aV
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= 36k r 2 nt. sin 2y.

+ 18k2 r0 c9 T si 2y (58)

where n Is the number of corrective Impulses in t me T. Thus the velocity

cheae per unit time is given by

Ve  r
I - + 18kc2 rc

50.9 sin 2y (ft/seC) (59)o yr

It is seen that the propulsion requirement might be as much as 50.9 ft/sec

for each year and this figure is independent of the time interval between

corrections. However, the time interval would be determined by assigning

a permissible value of the drift angle A7 and using Eq. (53) to determine

the corresponding value of t .O

It should be emphasized that the above propulsion requirement is only

for station-keeping and does not include the propulsion required for the

elimination of initial condition errors during orbital injection.

A plot of the yearly velocity requirement superposed on a Mercators

Projection of the earth is shown in Fig. 5. Thus, for a given position of

the satellite on the equator, the yearly velocity requirement can be read

directly. Based on Ref. 1 this curve has been plotted with the minor axis

of the earth's equatorial section located at 123° 9' West Longitude, and

560 51' East Longitude.

The mass of fuel for the above velocity requirement can be determined

from the relation
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!z * (60)

w ere
M a mass of fuel per year

p
m - total mass on orbit

I - specific impulse of the fuel

Thus for a cold gas system ( 1 75 sec) as much as 2.1 per cent of the mas

on orbit would be required per year for station-keeping propulsion.

It should be noted that in addition to the fuel weight, an attitude

sensing and control system would be required for this type of operation,

resulting in an additional weight requirement.

LAB ANGLE OSCILATIONS

In the absence of any station-keeping propulsion, the satellite will

execute large angle oscillations in the equatorial plane about the position

of the minor axis (7 - 00 or 1800). The period of these oscillations is

given by Eq. (47) and has been plotted as a function of the amplitude, 7o,

in Fig. 6.

During these oscillations the values of 7 and Ar as a function of time

can be determined from Eqs. (45) and (49). Figure 7 is a plot of Ar as a

function of 7 for an oscillation with an initial amplitude of 450, with

time points at intervals of one tenth of the total period (To = 1.541 yr).

It is seen that starting at 70 equal to + 45 the satellite initially moves

toward smaller values of 7 and toward positive increments in the orbital
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Fig. 6- Period of oscillation as a function of amplitude
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Fig. 7 -Variation in radius during oscillation



27

radius. The increment Ar reaches maxmau of + 25.9 mi at 7 equal to zero,

after which it decreases to zero at - 45. As y begins to increase, Ar

becomes negative, reaching a minimum of - 25.9 miles at y equal to 0 and

then increasing to zero as the oscillation completes its cycle at + 45P .

Figure 8 shows the magnitude of the maximum excursion of Ar as a function

of the amplitude yo, as determined by Eq. (51).

From the above discussion it is seen that a satellite in the immediate

vicinity of the minor axis (y - 00 or 1800) will execute sall angula oscil-

lations about either of these two stable positions. On the other hand, a

satellite in the vicinity of the major axis (y a * 900) is in unstable

equilibrium and the slightest disturbance will start a long period oscil-

lation with a double amplitude of 1800 about the position of the minor axis.

Reference 2 indicates that a synchronous satellite would be a very

effective tool for the determination of the ellipticity of the earth's

equator al plane. It is evident from the above analysis and discussion

that if a satellite of this type were established in orbit and allowed to

execute large angle oscillations, the midpoint of oscillation would be at

the position of the minor axis of the equatorial section. A measurement of

the oscillatory period and the amplitude, yo, could be used in Eq. (47) to

determine the value of k2 and thereby the parameter J 2(2) In the potential

function of the earth.
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IV. CONCLUSIONS

As a result of the analysis presented in this paper, the following

conclusions can be stated.

o The effect of the earth's equatorial bulge (J 2 term in the potential)

is to increase the radius of a synchronous satellite orbit by .32 mile.

o The effect of the ellipticity of the earth's equatorial section

(J 2 (2) term in the potential) is to produce large angle oscillations of the

satellite about the position of the minor axis of the equatorial section

with periods in excess of 1.3 years.

o Associated with these large angle oscillations are variations of the

orbital radius of the same period but with amplitudes less than 37 miles.

o Two stable positions exist for a synchronous satellite. These are

at the longitudes of the extremities of the minor axis of the equatorial

section, namely, 1230 9' W and 560 51' E.

o The longitudes or the two extremities of the major axis of the

equatorial section are positions of unstable equilibrium at which any small

disturbance will set up an angular oscillation with a double amplitude of

1800 about the position of the minor axis.

o To establish a synchronous satellite at any longitude other than the

two stable positions, it is necessary to provide station-keeping propulsion

which may amount to as much as 51 ft/sec/yr. This requirement is in addition

to that necessary for the initial orbital injection corrections.

o A synchronous satellite would be a useful tool for determining a

more exact value of the ellipticity of the earth's equatorial section both

n magnitude and orientation of the axes.
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